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Abstract 

In terminal airspace, inefficient operations occur 
frequently due to constrained airspace and 
uncertainty. Choke points can easily form in the 
terminal area and therefore reduce the efficiency of 
the entire National Airspace System. Based on 
previous work on scheduling of aircraft arrivals and 
departures with shared fixes in terminal airspace and 
uncertainty in departure and arrival times, this work 
extends the previous stochastic scheduler with 
dynamic capability such that the scheduler can be 
sequentially applied to air traffic in terminal airspace 
with a much larger time frame through sliding 
windows instead of a static 30-minute traffic 
scenario. Results show that great delay savings can 
be achieved by using the dynamic stochastic 
scheduler relative to current air traffic control 
procedures. With a 30-minute time window, if an 
aggressive solution is chosen, on average 5.2 hours 
can be saved in a day in Los Angeles out of the 30% 
arrivals and 10% departures that are covered in the 
experiment. The expected value of annual fuel saving 
would be more than 10 million dollars. However, the 
cost of potential controller intervention, which results 
from the uncertainty of estimated departure and 
arrival times, will increase by 50% on average. If a 
moderate solution is chosen instead, with the same 
expected controller intervention as using current 
procedure, more than four hours delay saving can still 
be expected. When uncertainty of departure time 
increases with look-ahead time, experiments show 
that optimizations with large windows still find better 
solutions than the ones with small windows when 
delay saving is moderate. However, when delay 
saving is high, time-varied uncertainty plays a more 
important role than window size, where a small 
window is preferred for finding good solutions. 

Introduction 
In the National Airspace System (NAS) terminal 

airspace, hundreds of flights must depart or arrive 
within a short time period every day. Limited 

airspace, complicated operations, and diverse 
uncertainties can easily impose inefficiency on 
terminal airspace operations, and form choke points 
in the system. Improving the operation efficiency in 
constrained terminal airspace in the presence of 
uncertainty becomes critical for achieving an 
efficient air traffic system. 

In order to improve the efficiency, researchers 
have addressed different perspectives of terminal 
airspace research, including arrival scheduling, 
departure scheduling, surface scheduling, and 
corresponding uncertainty analyses [1-9]. 
Additionally, when arrivals and departures share the 
same resources such as runways, waypoints and route 
segments, recent studies [10-13] found that optimized 
integrated arrivals and/or departures in major airports 
showed promise for improving operation efficiency. 
Besides the constrained airspace, uncertainty sources, 
such as flight time and weather, play an important 
role in scheduling problems in terminal airspace. The 
benefits from optimal schedules calculated under 
deterministic scenarios are usually sensitive to these 
uncertainties. A conventional way to deal with 
uncertainty is to use extra buffers in addition to the 
required aircraft separations. Previous work [14] 
proposed a proactive method – a stochastic scheduler 
- that directly takes uncertainty into account by 
optimizing integrated arrivals and departures under 
uncertainty. Compared with deterministic 
optimization using extra buffers, the stochastic 
scheduler can find better solutions under the guidance 
of uncertainty costs. 

This work extends the previous stochastic 
scheduler by integrating dynamic capability such that 
the scheduler can be applied to real-time traffic 
sequentially and seamlessly. With this dynamic 
stochastic scheduler, the investigations of integrated 
arrivals and departures are enabled for traffic with 
much longer time windows, while the capability of 
optimization under uncertainty is still intact. The Los 
Angeles terminal area was used as an example for 
demonstrating integrated arrivals and departures, 



because previous works showed potential benefits if 
departures and arrivals were scheduled to share 
waypoints. Experiments were run with given daily 
traffic in the LAX terminal area. Current terminal 
arrival and departure procedures along with first-
come-first-serve (FCFS) like scheduling represented 
a baseline, and the proposed dynamic stochastic 
scheduler, which performs optimization for 
integrated operations, was compared against the 
baseline. The outputs from these two methods were 
evaluated using a standalone simulator, in which 
flight departure and arrival times were assumed to be 
uncertain. In the experiments, different separation 
buffer sizes were used. Results showed hours of 
flight time reduction in a typical day when comparing 
with current arrival and departure procedures. Also 
time-varied uncertainties were introduced into 
departure times. These uncertainties were assumed to 
increase with look-ahead time. Experiments were 
then conducted with various window sizes to gain 
insights into the impact of time-dependent 
uncertainties. 

In the paper, Section II describes the problem 
studied in the work. Section III presents the 
methodology including the sliding window method, 
trajectory synthesizer, and standalone simulations. 
Section III provides the results and analysis. Section 
IV concludes this work. 

Problem and Background 
Los Angeles terminal airspace is a challenging 

airspace to study because there exists potential 
inefficiency due to interactions between arrivals and 
departures. This type of interactions between 
different flows may happen more often in the future 
due to the deployment of Optimized Profile Descents 
(OPD). Recent studies [15][16] are focusing on 
potential arrival and/or departure interactions in NYC 
when executing OPD. Although the Los Angeles 
terminal airspace is studied in this work, the 
methodology can be applied to other areas. 

According to the Standard Terminal Arrival 
Routes (STARs) and the Standard Instrument 
Departures (SIDs) of Los Angeles terminal airspace, 
the arrivals from the FIM fix are required to follow 
procedure SADDE6 (FIM-SYMON-SADDE-SMO) 
and the departures to the North need to use procedure 
CASTA2 (RWY-NAANC-GHART-SILEX) (see 
Figure 1). The arrivals are requested to maintain their 

flight altitudes above 10,000 feet at fix GHART and 
the departures have to keep theirs at or below 9,000 
feet at the same fix to procedurally avoid potential 
conflicts between arrivals and departures. If there 
were no interactions, departures to the North and 
arrivals from FIM would have flown direct routes. 
The direct routes would be RWY-WPT2-WPT1 and 
FIM-WPT1-SMO for departures and arrivals, 
respectively, as shown in the figure. WPT1 and 
WPT2 are made-up fix names for simplicity. 
Compared to these direct routes, besides flying non-
preferred altitudes, individual arrival and departure 
flights following current procedures will waste 
approximately 60 and 120 seconds, respectively.    

 
Figure 1. Interactions Between Arrivals and 

Departures at Los Angeles Terminal Airspace 

In order to study the benefit of sharing 
waypoints, a hybrid approach that included temporal 
control and routing was proposed such that both 
departures and arrivals can have two route options 
besides metering. Previous work [13] showed great 
benefits of delay savings when comparing against the 
current procedure without route options. 
Subsequently, a stochastic scheduler was developed 
[14] to cope with schedule optimization under 
uncertain environment. The results showed promising 
statistical delay/fuel savings over current procedures 
even with the same statistical controller intervention 
level as using current procedures, where the 
controller intervention was a cost purely caused by 
uncertainty in flight departure/arrival times. In that 
study, it was also found that, with the guidance of 
uncertainty costs, stochastic optimization can achieve 
better solutions than deterministic optimization in 
which extra buffers were used to deal with 
uncertainty.  



Method 
The static stochastic scheduler in previous work 

[14] was developed for a single fixed short time 
window (e.g. 30 minutes). It was assumed that the 
flights hadn’t entered the route structure when 
scheduling. Therefore, only three categories of flights 
were formulated: departure flights to the North, 
arrival flights via Fillmore/FIM, and arrival flights 
from the East. For each FIM arrival that has not 
reached FIM, there are four design variables: delay 
before FIM, route option, speed between FIM and 
WPT1 for the direct route or speed between FIM and 
WPT2 for the indirect route, and delay between 
WPT1/WPT2 and SUTIE. For a departure flight that 
hasn’t departed yet, three decision variables are 
defined: delay before departure, route option, and 
speed. For arrivals from the East, only one decision 
variable is defined, which is the delay before SUTIE. 
In this multiple-objective problem, there are two 
stochastic costs defined. One is the total delay 
compared to unimpeded operations where no 
separation is required. Another is the total count of 
controller interventions, that is the number of times a 
controller would be required to intervene to maintain 
separation. To introduce uncertainty, perturbations 
are imposed on the flight entry times: takeoff times 
for departures and entry waypoint (e.g. FIM or SUT) 
arrival times for arrivals. In both current and previous 
works, the perturbations follow a normal distribution. 
Unless otherwise defined, departures have a mean of 
-30 seconds and a standard deviation of 1.5 minutes, 
whereas arrivals are zero mean with a standard 
deviation of 30 seconds. It can be changed to other 
distributions if it is needed in the future. Given a 
solution, the costs are evaluated statistically over 
thousands of perturbed inputs/entry times. Both costs 
are evaluated stochastically with thousands of 
simulations. In previous work [14], an optimization 
method based on Non-dominated Sorting Genetic 
Algorithm (NSGA) and Monte Carlo simulation was 
developed for the stochastic scheduler and its 
implementation using Graphics Processing Units 
(GPUs) [17][18] enabled fast-time applications after 
dramatic reduction of computational time. The core 
scheduler in this work will adopt the same 
implementation. 

Sliding Window 
In order to investigate the benefit for daily traffic, 

and furthermore, to enrich the scheduler with the 

capability of scheduling continuously in real 
application for traffic with long periods, a dynamic 
stochastic scheduler that can sequentially provide 
updated optimal schedules is desired. To achieve that 
capability, a sliding window method is utilized.  

      The main idea of the sliding window is to divide 
a large time frame (e.g. a day) into small time 
windows (e.g. 30 minutes) and then to apply the 
scheduler to these small windows sequentially. In this 
work these small windows are chosen to have no 
overlaps. When scheduling for a small time window, 
the flights that come from the previous time window 
but still remain in the airspace would be included in 
the updated flight states. These updates will be fed 
into the optimization for next window. Three 
categories of flight state in the previous static 
scheduler will not be enough as the categories only 
cover flights that haven’t entered the entry 
fixes/waypoints. In the sequential scheduler, a total of 
nine flight state categories were formulated. For 
instance, flights that are between FIM and WPT1 
would be one category with three decision variables, 
and flights that are between WPT1 and SMO will be 
in another category with one less decision variable. 
With this enriched formulation, the scheduler is ready 
to handle flights at any stage on the designated route 
structure. 

Trajectory Synthesizer 
The Trajectory Synthesizer (TS), which is the 

trajectory calculation engine of the Center TRACON 
Automation System (CTAS) [19], is applied before 
the optimization process to generate various feasible 
high-fidelity trajectory profiles for arrivals and 
departures. When producing those profiles, the route 
structures associated with waypoints, altitude ranges, 
and speed requirements are imposed on the inputs of 
TS. TS will only generate trajectory profiles for 
feasible speed and route options based on the aircraft 
aerodynamics. These pre-processed feasible 
trajectory profiles, including speed options and fuel 
consumptions for flights with different aircraft types, 
will then be fed into the optimization and post-
analysis to increase the fidelity of the results.  

Standalone Simulator 
To set-up a complete and seamless experiment 

environment for the sequential stochastic scheduler, a 
standalone simulation platform, which includes 



Monte Carlo simulations, is needed to provide 
objective updated flight states by mimicking reality 
through incorporating randomness to flight entry 
times for next time window. To perform this 
functionality, the number of simulation is set to one 
to generate traffic scenario for next window. On the 
other hand, a standalone platform is also necessary 
for testing or verifying the benefits claimed in the 
optimization process.  In the optimization process, 
only 1,000 Monte Carlo simulations are conducted 
when evaluating an individual solution for a given 
time window of flight states because of the limits on 
running time for real-time application feasibility. 
Because the run-time requirements are not as strict 
for post-processing, the standalone simulation 
platform used 5,000 Monte Carlo simulations in post-
processing to verify the solution benefits. 

 
Figure 2. Work Flow for the Sequential Stochastic 

Scheduler 

The overall process is shown in Figure 2. The 
traffic including flight information is split to small 
time windows. After incorporating updated flight 
information (including uncertain departure/arrival 
times) provided by the standalone simulator, the 
traffic scenario is passed to the static scheduler, 
where trajectory/speed options provided by TS for 
each flight would be used in the optimization. The 
output schedule is recorded and it is tested using the 
standalone simulator. After that, the standalone 

simulator will provide: flight departure/arrival times 
based on the given distribution, updated flight states 
for flights that are still remaining on the route, and 
flights to be scheduled in next window. The process 
will be repeated till the time reaches the end of the 
traffic. 

Results 
In these experiments, a daily schedule along 

with aircraft types was built according to the traffic 
on December 4, 2012 (Tuesday). There are a total of 
378 flights, including 290 arrivals from Fillmore and 
the East and 88 northbound departures in that day. 
The separation criteria between different aircraft 
follow the published FAA ATC regulations [20] as 
shown in Table 1. Experiments were run on HP Z820 
workstation with multicores and 32GB memory. Two 
GTX690 with four GPUs were installed in the 
system. And expected values (averages) were used as 
the measurement of the stochastic results.  

Table 1. Separation Based on Wake Category 

Separation 

Distance (nmi) 

Leading aircraft 

Heavy B757 Medium Small 

Trailing 

aircraft 

Heavy 4 4 3 3 

B757 4 4 3 3 

Medium 5 4 3 3 

Small 6 5 3 3 

Pareto Front 
Pareto fronts representing ranges of solutions 

minimizing flight time and controller interventions 
were used to evaluate optimization outputs. In this 
work, Pareto fronts were obtained for each 30-minute 
time window. At the end of the process, dozens of 
Pareto fronts were generated corresponding to all 30-
minute windows in a day. To obtain a single front, 
the collection of Pareto fronts were combined and 
ranked one by one in a temporal order. Figure 3 
shows the final augmented Pareto front, which is 
represented by a curve composed of black dots. The 
coordinates of these dots are expected values of the 
costs associated, and they are evaluated in the 
optimization process. The curve composed of blue 
dots is based on re-evaluated costs of the same 
solutions using the standalone simulator with large 



number of Monte Carlo simulations. It is noted that 
these two curves almost overlap with each other, 
which further testifies that reducing the number of 
Monte Carlo simulations to one thousand in 
optimization doesn’t sacrifice the cost evaluation 
accuracy too much while saving running time of 
optimization as pointed out in previous work [14]. It 
is shown that the front from stochastic optimization 
with hybrid approach covers a large range of delays 
and there is clearly a trade-off between delay and 
controller intervention count. When the solution with 
the least delay is chosen, the average delay is less 
than 100 minutes in a day relative to unimpeded 
operations, whereas the expected value of controller 
intervention count would be over 100. That means, to 
achieve the least delay, if flights follow the optimized 
schedule at the beginning of every 30-minute 
window, controllers need to statistically take 100 
actions on average during the day to prevent 
unexpected loss of separations due to departure and 
arrival time uncertainty.  

Stochastic vs. Deterministic 
A popular approach of deterministic schedulers 

to deal with uncertainty is to add a buffer to the 

separation requirement. Figure 3 also shows solutions 
from a deterministic method with different buffers. 
As identified in the figure, the left circular, triangular, 
and square dots were produced using deterministic 
optimization with 0s, 30s, and 60s buffer, 
respectively. The data suggests that, under the 
guidance of stochastic costs, stochastic optimization 
performs better than the deterministic method. With 
the same controller intervention levels, stochastic 
optimization can provide an extra 50 to 150 minutes 
of delay savings. The right circular, triangular, and 
square dots were generated from deterministic 
optimization using only segregated procedural routes 
as in the published STARs and SIDs without direct 
route options. The differences between the stochastic 
hybrid method and the deterministic spatial method 
demonstrate the benefits brought by combining the 
hybrid separation approach with stochastic 
optimization. With the same level of controller 
intervention, hybrid separation approach with 
stochastic optimization can provide an extra 150 to 
250 minutes of flight time savings in a day over 
hybrid separation with deterministic optimization.  

 

 
Figure 3. Solutions Using Different Approaches 



 Figure 4. Daily Delay Comparisons 

 

 
Figure 5. Daily Fuel Consumption Comparisons 

Select delays from the stochastic hybrid 
approach and deterministic spatial approach are 
shown in Figure 4 and 5. For the former approach, 
the solutions with the least delay were chosen. 
These figures present comparisons using different 
extra buffers. It is noted that the total daily delay 
savings corresponding to different buffers vary 
from 5 hours to 7.5 hours. Whereas despite various 
buffers, the daily fuel savings stabilize around 
32,000 lbs/4712 gallons per day, which can be 
translated to 10 million dollars saving per year 
based on the average Jet A fuel price ($6.08/gal) in 
LAX area. 

Window size vs. Uncertainty 
In previous experiments, it was assumed that 

the uncertainties of both departure times and arrival 
times had constant means and standard deviations 
in spite of the look-ahead time.  This may be a 
reasonable assumption for arrival times based on 
arrival time prediction research [21][22], but not for 
departures where uncertainty always increases with 
look-ahead time. In the work done by Capps et al 
[23], a relationship between wheels off prediction 
accuracy at DFW and look-ahead time in June 2011 

was presented, where the wheels off time was 
predicted using the Surface Decision Support 
System (SDSS) [24][25]. Although that relationship 
may change with traffic scenarios, available 
information, and airport, it is nevertheless a good 
reference for setting up experiments in this work. 
The simple linear relationships shown in Eq.(1) and 
(2) were applied in this work, where the mean and 
standard deviation were assumed to linearly 
increase with look-ahead time ( TL ). 

Mean = 0.39 × TL                                        (1) 

Std. dev. = 0.41 × TL                                   (2) 

Figure 6 shows the Pareto fronts for the 
optimizations conducted under time-varied means 
and standard deviations that follow Eq. (1) and (2). 
The blue curve is the Pareto front produced using 
20-minute windows. Whereas the green curve and 
black curve are Pareto fronts obtained using 30 and 
60 minute windows, respectively. In deterministic 
cases or stochastic cases with constant uncertainty, 
the optimality of the results should increase with the 
window size because larger window size allows 
more space for optimization. This may not always 
be true when uncertainties grow with look-ahead 
time. The enlarged uncertainties will contradict the 
benefit brought by a large planning window and 
reduce the likelihood of planned benefits. As shown 
in Figure 6, at the high delay cost part of the front, 
large planning windows still produces better 
solutions than small ones. Whereas, at the low delay 
cost part of the front, the small window tends to be 
a better choice. The hypothesis is that when delay 
costs are relatively high, gaps between flights are 
large in associated solutions and uncertainty is less 
critical than planning duration. However, when 
delay costs are low, spaces between flights are tight 
such that uncertainty becomes the key impact on the 
final costs.  

Figure 6 also shows that the margins between 
different window sizes are relatively small when the 
delay costs are low. The reason could be that the 
time-varied uncertainties were only applied to 88 
departure flights, while the remaining 290 arrival 
flights still held constant uncertainties. The impact 
of time-varied uncertainties was only strong enough 
to eliminate the advantage brought by large window 
size but not strong enough to reverse it much. 
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The other take-away message from this figure is 
that time-dependent uncertainties should not be a 
concern when delay saving are moderate as the 
spaces between flights can absorb the impact of 

varied uncertainties. When schedules with 
aggressive delay saving are desired, a small window 
may be a better choice than a large window as it 
finds better solutions with less computational time.       

 

 
Figure 6. Pareto Fronts Under Different Uncertainties Using Expected Values 

Conclusions 
This work extends the static stochastic 

scheduler with dynamic capability such that the 
scheduler can be applied to real-time traffic 
continuously. Using this dynamic stochastic 
scheduler enabled investigations of optimized 
integrated arrivals and departures under uncertainty 
for extended traffic periods. A sliding window 
method was proposed to divide a large time frame 
into small time windows to which the scheduler can 
be applied. In order to increase the fidelity of 
results, TS was used to calculate possible trajectory 
profiles in preprocess and resulting speed options 
were then fed into the schedule optimization. 
Additionally, a standalone simulator was developed 
to simulate the effects of uncertainty and to provide 
updated flight states for following time window. 
The standalone simulator was also used to verify 
the results from optimization.  

The Los Angeles terminal area was used as a 
test location for demonstrating integrated arrivals 
and departures. Experiments were run using given 

daily traffic in LAX terminal area, which covered 
30% of arrival traffic and 10% of departures. With a 
30-minute time window, the stochastic scheduler 
can find better solutions than the deterministic 
scheduler using buffers to account for stochastic 
impacts. The results show that with the same 
controller intervention level, additional delay 
savings vary from 50 to 150 minutes. Compared to 
the baseline, which utilized current terminal arrival 
and departure procedures with first-come-first-serve 
(FCFS) like scheduling, the stochastic scheduler 
can provide an extra 150 to 250 minutes delay 
savings at the same controller intervention level. If 
an aggressive solution is allowed, an average of 5.2 
hours can be saved in a day in LAX. The expected 
value of annual fuel saving would be more than 10 
million dollars. However, the cost of potential 
controller intervention, which results from the 
uncertainty of estimated departure and arrival times, 
will increase by 50% on average. If a moderate 
solution is chosen instead, with the same level of 
controller intervention, there is still more than four 
hours of delay saving.  



Time-varied uncertainties were introduced to 
departure times, where uncertainties increased with 
the look-ahead time. Using constant uncertainties 
for arrival times and time-varying uncertainties for 
departure times, experiments were conducted with 
20, 30, and 60-minute windows. It was shown that 
to search for solutions with moderate delays, 
window size played a more important role than 
uncertainty. When the target was to find solutions 
with aggressive delay savings, the impact of 
uncertainty dominated, which made small windows 
a better choice.  

The sequential stochastic scheduler developed 
in this work showed its promising capability in 
continuously optimizing schedules under time-
varied uncertainties. In future work, the scheduler 
will be extended to cover all departures and arrivals 
in LAX for both airborne and surface operations.  
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